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Abstract—Time series often present gaps in the data. This
phenomenon, also called missing values, is so prevalent that a
cottage industry of missing-value imputation algorithms exists,
each with different capabilities and efficacy/efficiency tradeoffs.
So far, however, there has been no way to accurately select the
most appropriate approach among all algorithms, given a new
time series requiring imputation.

In this paper, we introduce a new configuration-free system,
A-DARTS (for Automated DAta Repair in Time Series), to
automatically select the best imputation technique for a given
faulty time series. A-DARTS’s recommendation engine is trained
via an iterative process that carefully learns the behavior of
imputation algorithms using an extensive dataset of time series
that we curated. The selection process is made efficient by several
new pruning techniques particularly adjusted to time series data.
Applications that manipulate time series can now easily embed
A-DARTS’s recommendation engine and impute data on the
fly. Our experiments show that our system picks, on average,
the best imputation algorithm 20% more frequently than the
best-in-class AutoML technique. Moreover, it produces stable
recommendations across datasets by incurring 2.5x less error
variance, eliminating the stability issue observed in all state-of-
the-art methods we tested.

Index Terms—time series, data repair, imputation, missing
values, model selection, feature extraction.

I. INTRODUCTION

Time series data is the lingua franca of IoT devices in
particular and sensors in general. Processing data from these
devices is at the core of several applications, such as anomaly
detection [1[]-[3]], forecasting [4]], [S]l, data mining [6], [7],
classification [8f], similarity search [9], [10]], to cite a few. In
practice, IoT devices and sensors may suffer temporary failures
in data transfer due to power loss or interference, leaving the
resulting time series with a missing block of values. Processing
these faulty time series is known to yield suboptimal or wrong
results [11f], [[12].

Over the last decades, several imputation algorithms have
been introduced to recover the missing blocks in time se-
ries [[13]]-[32]]. These algorithms take a faulty series and, based
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on various replacement strategies, suggest surrogate values for
the missing portions. The critical aspect of these algorithms is
that they aim to produce an imputation suggestion that does
not mischaracterize the time series. Suggesting a verisimilar
replacement for the missing block restores the time series’
ability to be processed correctly.

This quest for verisimilarity is ultimately what fuels the
diversity of imputation algorithms. A missing block in one
such series should be replaced with values that reflect the
series features, and no single algorithm has proven capable of
producing good replacement values for a wide variety of cases.
Finding the appropriate imputation is of paramount importance
since it heavily impacts the quality of downstream tasks [[15].
Our experimental results on various datasets show that the
careful selection of imputation algorithms drastically improves
time series forecasting by up to 80%. To guide the choice
of existing algorithms, there exist benchmarks and evaluation
studies that determine which algorithm does well and in which
circumstances [33[]-[35]].

Those works, however, are all qualitative as they only
provide guidelines for algorithm selection. Instead, we seek
a method that, given a new time series with missing blocks,
automatically recommends the best imputation algorithm to fix
it. Since the incomplete time series is unknown, this problem
can intuitively be solved using classifiers. In other words, a
classifier can be trained over the results of each imputation
algorithm on a large number of time series and then used
to recommend the best imputation class for the new series.
Unfortunately, this alternative is known to yield subpar results,
as the performance of classifiers often varies from one dataset
to another depending on the features carried by the series [36],
[37]. We will discuss this observation in more detail later.

AutoML methods [38] have recently emerged to cope with
the lack of stability of classifiers. Simply put, AutoML meth-
ods are expressed as “just add water” frameworks that aim to
find the most adequate models, classifiers in our case, and their



hyperparameters for a given task [39]-[42]]. These techniques

essentially pitch different models against one another, pruning

poor-performing ones along the way and eventually selecting
the best model. Existing AutoML techniques are instrumental
for recommendation problems similar to ours, but they suffer

a major drawback: only one model survives the search. As

stated above, no known model performs best in all scenarios,

thus leading to poor recommendations. Those frameworks
cannot find more than one “winning” model for two reasons.

First, their search strategy explores a reduced space of model

configurations, which does not consider time series features.

Second, they lack an adaptive filtering that allows variations of

the same model to survive. Due to those challenging aspects,

the automated selection of time series imputation techniques
remains an open problem.

Our paper aims to solve the limitations of existing AutoML
solutions using a new method specialized for time series im-
putation. Our framework, called A-DARTS, achieves efficacy
and efficiency thanks to (a) a novel fine-grained navigation
strategy to pitch models against one another that allows for
more than one winning model, (b) a new feature selection
mechanism, and (c) highly-curated training datasets to use
as ground truth. We methodically gather 67K real-world time
series from various applications that cover a significant range
of values for all the needed features.

The A-DARTS framework is systematically more accu-
rate for time series imputation in all the cases we tested,
and presents 2.5x less error variance than the best existing
AutoML frameworks available. A-DARTS is also extremely
fast and is almost instantaneous with the time it takes to
make a recommendation. The source code of A-DARTS and
the training datasets are open-sourced. Any other application
can easily embed the model that results from A-DARTS’s
training, along with a selection of algorithm implementations,
thus acquiring the ability to perform automatic time series
imputation. To the best of our knowledge, no other method
exists for this task that is as precise and efficient as A-DARTS.
In summary, we make the following contributions:

« We propose a time-series-specialized AutoML system called
A-DARTS to find the best imputation algorithm.

« We introduce ModelRace, the model selection component
of A-DARTS, which implements a two-phase pruning ap-
proach to identify the optimal model.

« We devise two additional components to characterize incom-
plete time series and speed up their labeling with missing
values imputation algorithms.

e We conduct a comprehensive evaluation of A-DARTS,
demonstrating that it significantly outperforms state-of-the-
art comparable systems across various datasets, particularly
by providing much tighter bounds on the variance of rec-
ommendation quality.

II. BACKGROUND AND MOTIVATION

In this section, we discuss the variety of available imputation
algorithms and the inherent difficulties of matching them to
the use cases where each performs best.

Imputation Algorithms and Dataset Labeling. Im-
puteBench [33]], [43]] is the most comprehensive benchmark to
date for time series imputation algorithms. It brings together a
large variety of the most advanced imputation algorithms using
the same code base and presents parameterized versions of
each that strike a balance between accuracy and runtime. Our
work borrows the 20 advanced imputation algorithms imple-
mented by the benchmark [44]. The algorithms are tested on
five different patterns for time series. The idea is that different
shapes of missing blocks may require different algorithms
when occurring on multiple series. We observed, however,
that one characteristic of missing blocks was overwhelmingly
determinant: its size. Therefore, we decided to focus on
this dimension as representative of the variety of missing
blocks. A-DARTS explores missing block sizes ranging from
10 to 80% of a given series, but we note that should the
users wish, other patterns can also be considered. To avoid
assigning a different imputation for each missing rate, we pick
a representative imputation for the whole interval. We do so
by picking the algorithm with the best average performance.
We sort the algorithms using their recovery error over multiple
sub-ranges (e.g., 10 to 20%, 10 to 40%, etc.). The imputation
algorithm with the highest average rank is then chosen.

While ImputeBench does not recommend algorithms per
se, it can generate labeled data for training a recommendation
model. A naive solution would run a large variety of faulty
time series through the algorithms suggested by the benchmark
and obtain, for each series, how the measured algorithms
performed relative to one another. Although inefficient—a
large number of series would be necessary to cover the
many particular scenarios where missing blocks occur—this
annotated dataset is the starting point for our problem analysis.
In the latter sections of the paper, we discuss obtaining a
similar annotated dataset with a fraction of the effort.

The Model Selection Problem. With such a labeled set, a
classifier could be trained to learn the circumstances under
which each imputation algorithm performs well. Presumably,
given a metric of time series similarity, the best algorithm
for the new series should be the one that performed best for
the series used in the training set. Many candidates exist for
such a model, e.g., kNN classifier [45]. This model would use
nearest-neighbor search to match the features of the new faulty
series with previously known series features.

We evaluate whether KNN could be an adequate model in
this case by comparing its efficacy against two commonly
used classifiers, Multi-layer Perceptrons (MLP) [46] and Cat-
Boost [47]]. We also add the performance of a multi-winner
strategy (MW), used by our system. To ensure a fair evalua-
tion, we apply a configuration that seems sensible for the three
classifiers. We report the average results from six categories:
households’ electricity consumption (Power), water quality
measurements in rivers (Water), motion sensors in humans
performing different activities (Motion), weather phenomena
in different Swiss cities (Climate), electromagnetic events
associated with storms (Lightning), and human health-related



data (Medical). Each category includes multiple datasets with
thousands of time series as described in Section [VIIl
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Fig. 1: Classifier Performance on Six Dataset Categories.

The results in Figure [I] show that aggregating multiple
classifiers (MW) consistently yields superior results. They also
show that kNN outperforms the other classifiers for series
from water and climate datasets. It does less so for the other
profiles. We observe the same phenomenon with the two
other classifiers. No classifier in this experiment performs
consistently better in all cases. To explain those results, there
are two aspects to consider: a classifier can be parameterized,
such as setting the ’k’ in kNN or the number of branches
in a decision tree; and the feature dimensions should be
somehow normalized. The latter is particularly important given
the variability in feature types—some are categorical, while
numerical features span vastly different ranges, from 0 to 1 in
some cases and from -4,728 to 6,217 in others.

The combination of available classifiers, their potential
parameterization, and the myriad of different feature scalers
opens a considerable search space for models. The manual
exploration of this large space is prohibitively expensive.

AutoML Techniques. Fortunately, efficient exploration tech-
niques exist. AutoML [38]], [48]] has recently emerged as an
automated solution to find the most suitable model for a given
machine learning task. It encompasses various techniques, but
in our case, we are interested in the space search mechanism
known as Model Selection. Specifically, we aim to discover
an effective combination of a classifier, its hyperparameter
configuration, and a feature scaler (a weight assigned to
each feature). In the AutoML literature, this combination is
commonly referred to as a pipeline.

In general, automated Model Selection requires three com-
ponents: (a) a pipeline synthesizer that generates candidate
pipelines, (b) a pipeline filtering that eliminates pipelines that
do not meet the desired performance metrics, and (c) a search
strategy that feedbacks into the synthesizer, guiding it on the
types of pipelines to generate next. We apply this approach in
our case as follows. A synthesizer generates an initial set of
pipelines that the evaluator then tests. The testing involves two
phases: training the classifier on a portion of the annotated data
and assessing its performance using the remaining data. Based
on the evaluator’s scores, the search strategy might determine
that exploring slight variations of kNN, for instance, could be
beneficial. It then directs the synthesizer to focus on generating
more of those. This cycle continues until a specified time limit
or performance threshold is reached.

III. RELATED WORK

Several AutoML frameworks are available that purport to
address generic recommendation tasks. They differ in how they
approach pipeline synthesis, evaluation, and search strategy.
We apply those frameworks to solve our task by feeding them
with the labeled data we generate and the time series features
we extract. We discuss next what aspects of these frameworks
make them unsuitable for our use-case and empirically com-
pare their performance against A-DARTS in Section

Table [[| provides a summary of the existing techniques we
compare against, highlighting how A-DARTS enhances the
model selection landscape. The first column, “Model Con-
figuration”, indicates whether the methods consider various
input classifiers, allow multiple instances of the same classifier
to survive, and return multiple winners. The second column,
“Data Features”, specifies whether the techniques include a
feature extractor and feature scaling in the search space. A
brief description of each technique is provided below.

TABLE I: Comparison of existing model selection techniques.
v': Supported. X: Not supported.

Model Configuration Data Features ‘
|multiple models[multiple instances]multiple winners|extraction[scaling|

‘ Technique

FLAML [41]
Tune [40]
AutoFolio [39
RAHA [49]

[ ADARTS ||

NIREEE
<[ x| X| x| %
x| x| x| x
[ ] x| x
X x| x| x

FLAML is a lightweight and easy-to-use AutoML frame-
work from Microsoft [41]]. It configures multiple classifiers at
a time and selects a single winner pipeline. FLAML considers
all variations of a given classifier to be the same pipeline. In
other words, when it discards a given pipeline, it eliminates the
chances of any more helpful variation being selected. Similarly
to our system, FLAML generates the configurations on the
fly by expanding the parameter space. It builds a tree-like
representation of configurations and more eagerly explores
the branches expected to find better parameters. Each branch
represents a different classifier; thus, a unique configuration
survives the race. The configurations are iteratively trained on
a random sample of the data, and a corresponding cost value
that combines error and time is computed. FLAML compares
the cost produced by each configuration, and the training
sample is resized based on the cost improvement between
consecutive iterations.

Tune [40] is a model selection system that configures
a single classifier at a time (hand-picked by the user). It
pre-generates configurations evaluated using various search
algorithms such as Hyperband [50]. The parameter search
starts with a large set of randomly generated configurations
and iteratively decreases the size of the set. Each iteration
uniformly allocates a time budget to each configuration,
evaluates its performance, and discards the worst half until
one configuration survives. The surviving configurations from
each iteration are compared against one another, and the best-
performing one is returned.
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Fig. 2: Overview of A-DARTS, which takes time series with missing blocks as input and recommends the most-suitable
imputation to repair them. (1) It starts by labeling the time series for training and (2) extracts their features. Then, it executes
the model training where it iteratively (3) generates new pipelines, (4) defines the cut-off performance, and (5) prunes the
less-performing pipelines. Upon executing ModelRace, A-DARTS returns the best-performing pipelines. Next, (6) it feeds the
winning pipelines with the features of the new incomplete series, and, lastly, (7) recommends the best imputation technique.

AutoFolio [39]] is yet another system that configures a single
classifier by pre-generating a list of parameter configurations.
The parameter exploration begins by generating random seed
configurations and iteratively introducing perturbations to only
one parameter at a time. The updated configurations are eval-
vated on different data partitions over a dynamic time budget.
The configuration that does not improve the performance is
discarded, and the one that yields the best average performance
across different data partitions is recommended.

RAHA [49] is a model selection system for error detection
in relational data. It compares the performance of multiple
classifiers and recommends the configuration that best predicts
if an unseen tuple is erroneous. RAHA extracts basic statistical
features of the data, such as mean, variance, etc., and uses
them to compute the similarity between the columns of the
table. A different classifier is trained for each cluster of similar
columns. The training is executed on a fraction of data clusters
that are already user-labeled with the best detection technique.
To apply RAHA to our problem, we merge RAHA’s features
with the ones we extract. We also adjust its objective function
by using the inverse of the Root Mean Squared Error (RMSE)
instead of the F1 score when computing a strategy’s score.

A handful of model selection techniques for other time se-
ries tasks exist. Time series forecasting is one of the most com-
mon fields where several model selection techniques have been
proposed [4]], [37], [51], [52]. Those techniques operate in the
same vein, using predictors instead of classifiers. Anomaly
detection is yet another application for model selection [36].
Existing work compares the performance of pre-configured
classifiers and recommends, for each type of anomaly, the best-
performing one. Unfortunately, none of those techniques can
be applied to our case as they operate on a single time series
partitioned into smaller subsequences.

Addressing the issues of existing model selection techniques
entails navigating a significantly larger pipeline search space.
We achieve this through novel, specialized search and pruning
strategies, implemented within an imputation-centric AutoML
framework that we refer to as A-DARTS.

IV. SYSTEM OVERVIEW

A-DARTS’s goal is to take a set of multiple univariate
time series with missing blocks and to recommend the best
imputation technique to recover them. The two most salient
features of the framework were motivated by our preliminary
experiments: (a) the recommendation is made by a voting
process as opposed to a single classifier, and (b) the pruning
performed by the framework is on a pipeline level rather
than on a classifier one. Figure [2] presents A-DARTS’s main
components and how they interact. Our framework undergoes
a one-time training phase before it can be used to produce
recommendations. We discuss the training process in Sec-
tion and the recommendation process in Section [[V-B]

A. Training

The training phase revolves around A-DARTS’s model
selection process, called ModelRace. The process requires hav-
ing labeled data available that associates time series/missing
block configuration with an imputation algorithm. Obtaining
this annotated data would be prohibitive in time if applied to
each time series in a dataset separately. Instead, we propose to
cluster the series according to their similarity and propagate
the labels within the clusters (step 1 in Figure 2. The detailed
clustering process will be discussed in Section [VIl Once the
data is labeled, our system extracts the time series features (2)
needed to identify the best imputation technique.

Internally, ModelRace implements an iterative process to
select the best possible pipelines. The process starts with an



initial set of pipelines called seed. For initialization, the seed
must contain at least one pipeline per classifier type that needs
to be considered. The reason is that ModelRace will try to
synthesize and evaluate variations of the seed pipelines, each
containing different parameterization and feature scaling con-
figurations. To do so, it uses a component called a synthesizer
(3) to generate derived pipelines from existing ones. Each new
pipeline is then evaluated, i.e., trained on labeled data, and
then scored according to its efficacy by a scoring component
in ModelRace (4). The less-performing pipelines are filtered
out by a pruning mechanism (5) before the process starts over.
We explain the process in more detail in Section [V]

B. Inference

The algorithm performing imputation on a faulty times
series can be obtained by extracting the series’ features. To
that end, we use the same feature extractor as used in training
(6) and feed that information to the winning pipelines. A
soft voting mechanism aggregates the recommendations of the
selected pipelines (7) to choose the algorithm. The voting con-
structs a score matrix, where each entry reflects the probability
of a specific imputation algorithm being selected by the chosen
pipelines. It then aggregates these probabilities by averaging
them across different pipelines for each imputation class.
The class with the highest average is ultimately selected for
imputing the incomplete series. When comparing soft voting
to hard voting, we found that soft voting consistently achieved
higher accuracy across all datasets. This improvement stems
from the fact that soft voting fosters consensus among top-
performing algorithms, leading to a more reliable choice.

V. MODEL SELECTION

At the heart of ModelRace lies a process that expands and
prunes the number of pipelines being considered. We present
the search algorithm that guides this process in Section
Our search algorithm heavily relies on similarity computations
between time series. We discuss the time series features we
use for such similarity calculations in detail in Section [V-B]

A. ModelRace

We begin by outlining the core intuition for discovering
competitive pipelines. ModelRace employs an iterative search
process that continuously refines pipeline performance. Start-
ing with an initial seed of pipelines, ModelRace synthesizes
new variations at each iteration, selectively expanding the most
promising candidates. To ensure incremental improvement,
modifications are kept minimal—only a single parameter is
adjusted per iteration. ModelRace eliminates underperforming
pipelines through a two-phase pruning mechanism. Initially,
it evaluates candidates using a small subset of training data,
progressively increasing the data size with each iteration. This
dynamic approach ensures that only the competitive pipelines
advance, continuously adapting to new and unseen data.
Through pairwise comparisons, ModelRace removes pipelines
that perform statistically worse than their competitors [53]].

TABLE II: Notations used in Algorithms [2| and

Algorithm  Symbols | Description
P set of all possible pipelines
(C] subset of pipelines
0; a pipeline {classifier, params., scaler}
S training set of features and labels
Alg. 1 T test set
f1,r3 F1 and Recall@3 of a pipeline
time runtime of a pipeline
a, B,y scoring coefficients
X set of time series
X; individual time series
Alg. 2 ¢ set of clusters
C; cluster of X;
c* cluster with the highest correlation gain
p(Cy) average correlation inside C}

Before presenting ModelRace, we introduce the pseudo-
code of the pipeline synthesis in Algorithm [T} To ensure
clarity, all symbols used in this and subsequent algorithms
are defined in Table [l The synthesis process begins by
identifying pipelines, within the search space P, that share the
same steps—normalizer, scaler, dimensionality reducer, and
classifier head—as the candidate pipelines (line 3). To enhance
diversity, the pipeline pool is then expanded through sampling.
Two-thirds of the new pipelines are drawn from the previously
retrieved set (line 4), ensuring continuity by preserving the
same steps with varied parameters. The remaining one-third is
sampled directly from the remaining space (line 6), introducing
fresh variations that enrich the search space. This synthesis
strikes a balance between expansion and exploration, refining
pipeline steps while introducing new parameters.

Algorithm 1: Pipeline Synthesis

Input : Set of candidate pipelines: ©,
Number of pipelines to synthesize: N
Output: Set of generated pipelines: ©™"
1 @new —_ @ :
2 foreach 0; € © do
3 O™ = FindSimilar(0;, P) ;
> Find pipelines with similar steps
new N simy .
4 o7 :Sample(%x@,G );
S GHEUJ — @’VLEU) u 6;{1611} ;
6 O™ = Sample(1N, P\ O"¥);
7 @TLE’LU — @new U @ emp ;
8 return ©"<%

We now discuss our search and pruning strategy. Algo-
rithm [2] describes the pseudocode of ModelRace. The algo-
rithm takes as input a set of seed pipelines © with a unique
set of parameter values sampled from the set of all possible
pipelines P. It uses partial training sets S = {S1,...,Sn},
each represents a subset of the training set, and 7, a test set
used during evaluation.

At each iteration, we select a new partial training set .S;
(line 2) and expand the set of pipelines by generating new
candidate pipelines (line 3). We generate new pipelines based
on the current surviving candidates O¢lite yged as seeds.



Algorithm 2: ModelRace

Input : Set of seed Pipelines: © = {61,...,0,} ~ P,
Set of partial training data: S = {S1,...,Sm},
Testset: T’
Output: ©°"*; set of best-performing pipelines
1 6€lzte — (__) :
2 foreach S; € S do

3 | O™ = Synthesize(©") ;
4 C__)cand — C__)elite U @new
5 foreach SF' € StratifyKFold(S;) do
6 foreach pipeline 0 € ©°*™¢ do
7 0 = Train(0, SF);
8 f1,r3,time = Evaluate(9, T);
_ (a f14B:13)—(v-time) .

9 scoreg = P ;
10 scores <— scores U scoreg;
1 if 30’ s.t. scores < scorey: then
12 @cand — @cand \ {0}

L > Early termination
13 ©°e = Prune(©°*™¢, scores);

> Prune using T-test comparison between
all pairs of pipeline’s scores

14 return @¢clite

The evaluation of the pipelines is performed on different
stratified k-folds [54] to produce multiple scores per pipeline
(line 5). The stratification guarantees the same distribution
of samples/classes as in the original dataset to avoid over-
fitting. Each pipeline is trained on a small portion of the
data (line 6) and evaluated on the test set (line 7). We
compute a score using a weighted average of performance
metrics such as F1-Score and normalized runtime to maximize
effectiveness while minimizing execution time (line 8). Once
the pipeline evaluation on a given fold is completed, we
search for pipelines with a significantly higher score than the
current one on the same fold. If the search is not empty, we
early terminate the current pipeline (lines 11-12), allowing the
training on the remaining folds to complete faster.

The remaining pipelines (©¢*"?) can still be large, as only
the worst ones are terminated early. We apply a second-
phase pruning to reduce its size further while keeping some
diversity in the results. At the end of each iteration, pairwise
significance t-tests [55] are performed on the pipeline scores
(line 13). We compare the score distributions between all pairs
of pipelines, and if the t-test considers that they are similar
with a high significance, we prune the one with the lower
average of scores. More training data is then available for
the remaining pipelines to continue training. The algorithm
terminates when all partial training sets have been used.

Figure [3] illustrates ModelRace through an example. As
introduced above, a pipeline is, in our context, a tuple <clas-
sifier, classifier hyperparameters, feature vector scaling strat-
egy>. We consider two input classifiers: k-nearest Neighbor
(kNN) and Decision Tree (DT). Their hyperparameters are the
number of neighbors (k) and the tree depth (d), respectively.
Each classifier may choose to normalize the feature values
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Fig. 3: ModelRace Pipeline Selection.

differently, e.g., through an L1/L2-norm normalizer, a PCA-
based dimensionality reduction, etc.

We start by generating new pipelines based on the input
(Step 1 in Figure . For example, P1’ is generated based
on P1 by changing only the scaling to the L2-norm. The
generation process is centered around the existing pipelines
such that it introduces only small changes to the parent
pipeline by modifying only one parameter at a time.

Next, we perform the training and evaluation step (2) of all
the pipelines. Once the results are obtained, we compute the
F1 score using the test set and verify if any pipelines perform
significantly worse than the others. In our case, P1’ has a very
low F1 compared to the best result. At this point, we apply
early termination on P1’, which is eliminated from the race.

The last step is the second phase of pruning (3). Using
previously obtained scores, we rank the remaining pipelines
according to the average results of pairwise t-tests. Only P3’
and P1 survive this phase of pruning. Next, we augment the
training subset with more time series and repeat the process
again, starting with the generation procedure until we exhaust
all the training subsets, as described in step (4).

Complexity Analysis. The pipeline selection iterates over
m = |S| folds. Each iteration invokes the training of n
pipelines, each over k stratified folds. Since at each iteration
only a small fraction of the whole training set is used until it
reaches the full size and % is set to a small constant, the worst
case time complexity is O(n x |S]).

ModelRace keeps in memory the training set, the pipelines,
and their evaluation scores. Since the number of pipelines
decreases with the iterations, the space complexity is linear
with the size of the training set.

B. Feature Extraction for Imputation

As mentioned earlier, A-DARTS provides a configuration-
free recommendation for imputing missing values. The best



recommendation is obtained by feeding parameterized clas-
sifiers with the relevant features. Those features help the
classifiers assign the same imputation algorithm to similar time
series. Feature extraction is a well-studied problem in some
time series tasks such as clustering [56]] or forecasting [51]].
We build upon this line of research and introduce a new set
of features for imputation.

We curate a set of existing statistical features and group
them into two representative categories: statistical and topo-
logical. The topological features need is evident in early
experiments, where we notice that classifiers that rely solely on
statistical features perform poorly. Ultimately, the combination
of both types of features is what allows our system to
accurately identify the time series properties that impact the
imputation process.

Statistical Features. We extract a list of statistical features by
concatenating various feature extraction tools (e.g., TSFresh,
Catch22, or Kats) [57]. We explain those features using a
coarse-grained categorization. The first category—canonical—
includes measures summarizing time series basic statistical
measures such as mean or variance. They serve as an indicator
of the evolution of data over time. The second category—
dependencies—encompasses measures that capture dependen-
cies in time series, such as auto-correlation. Those dependen-
cies occur within the time series at different time intervals. The
values of the third category—trends—describe the seasonality
and frequency of a time series. Linear transformation methods,
such as Principal Components (PCA), that help detect the data
trend also belong to this group.

Topological Features. Topology pertains to the shape of the
data, which is, unfortunately, not covered by any statistical fea-
ture. Feeding the classifiers with this property allows them to
include the visual resemblance in the similarity computation.
Several properties can contribute to the definition of shape in
time series. The temporal order of the values is one example
that heavily impacts the performance of some imputation
techniques. Statistical measures cannot capture the order of
the data, as they are time-agnostic. Perturbation is another
example of shape-based properties that are not detectable by
any statistical extractor. It identifies whether a time series has
changed its trend due, for example, to a sensor malfunction.

We built a new topological extractor that maps time series
onto a multidimensional space, which captures the shape of
the series. Our topological extractor extends Topological Data
Analysis (TDA) [58] to time series data. Figure {] illustrates
the main steps of the process. First, we embed the input time
series into a time-delay space that captures their non-linear
relationships. We achieve this by mapping each time series
X ={(t1,v1), ..., (tm,vm)} into a sequence of vectors (see
Figure @ Each new time series will have the form of v} (j) =
(Vs Vjgrs -, Vjt(d—1)7), Where T is the time shift, and d is
the embedding dimension.

After embedding the time series, we construct a persistence
diagram (cf. Figure [59]. This diagram captures the birth
and death of each pattern in the time series. Those patterns
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Fig. 4: Topological Feature Extraction.

correspond to the “holes” visible in the embedding. More
specifically, each point (b;,d;) on the diagram represents a
pattern where b; is the time of its birth, d; is the time of
its death, and d; — b; > 0 is the span of time over which it
was alive. Finally, we use the distributions of points in the
persistence diagram as topological features.

VI. DATA LABELING

The ModelRace process outlined above relies on access to
a large and diverse dataset of labeled time series. To facilitate
labeling, we cluster time series and label them at a cluster
level. We start this section with an intuitive example of how
the clustering algorithm works in Section [VI-A] The algorithm
has two phases: one in which we construct an initial set of
clusters, which we discuss in Section and one in which
we refine the clusters, described in Section

A. Clustering Intuition

Given the vast number of time series we consider—more
than 67k—it would be unfeasible to apply all imputation
algorithms on each individual series. For instance, the results
presented in [33]] were derived from just 260 time series and
required several days to compute.

Instead, we propose to approximate the labeling results
of the time series with imputation algorithms. A-DARTS
clusters times series and labels a representative series from
each cluster, propagating the label to the other series from the
same cluster. This labeling process can leverage shape-based
clustering [60], which groups time series with similar shapes.
A popular method, K-shape [61]], utilizes time series cross-
correlation to estimate shape similarity, given a predefined
number of clusters. However, determining a desirable number
of clusters is challenging due to the diverse nature of the time
series datasets and their application domains. To address this,
we introduce an incremental splitting approach to identify the
optimal number of clusters.

We illustrate in Figure [5] the two phases of our iterative
clustering process, initial and refined clustering, using eight
time series and their cross-correlation as a similarity measure.

In the first phase, we cluster the input time series into several
clusters based on their similarity. This produces three different
clusters C1, C2, and C3. The second iteration will further
cluster the time series inside C2 into two different clusters, C4
and C5. Therefore, the first phase produces four intermediate
clusters: C1, C3, C4, and C5.
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Fig. 5: Example of Incremental Clustering.

The second phase reduces the number of clusters while
maintaining a high series similarity. It does so by redistributing
some series and merging small clusters. For instance, we move
T3 from CS5 to C3, as this will further increase the similarity
inside C3. Following the same rationale, we merge C4 with
the updated C5. We obtain three clusters at the end of this
phase: Cl1, C3, and C6.

B. Initial Clustering Phase

Algorithm [3] describes the pseudo-code for our clustering
algorithm. The initial phase is described in lines 2-8. It checks
whether the time series within each cluster are not highly
correlated (line 4). In that case, it dynamically divides the
cluster into sub-clusters (line 5). The number of subclusters is
the product between the size of the cluster and the estimated
percentage of time series in the cluster, p. We empirically
set this ratio to 20%. The resulting clusters are added to a
pending ensembles’ list S (line 6), which contains the set of
time series that do not yet form final clusters. This process is
repeated until it reaches the desirable average correlation.

This initial clustering phase yields either many mono-
sequences or small clusters, as it tries to maximize the
correlation inside clusters. This incurs a high runtime since
the imputation benchmark will need to perform more runs to
label the data. We address this issue by applying a merging
phase that minimizes the number of produced clusters while
maintaining a high correlation.

C. Refining Phase

For each small cluster, we evaluate the correlation gain that
would result from merging it with another one (line 10). In
case of positive gain, we merge the two clusters (lines 11-12).
If no such cluster exists, we evaluate each series separately in
the same way and move an individual series instead (lines 15-
17). In case no cluster yields any positive gain, the sequences
remain in their original cluster.

We note that our merging procedure reorganizes the cluster-
ing using two operations: merge and move. These operations
are based on maximizing the correlation gain (CG) between
clusters. CG borrows its intuition from the concept of modu-
larity, which is used in the popular Louvain graph clustering
algorithm [62], and extends it to time series. We now define
the correlation gain formally.

Algorithm 3: Incremental Clustering

Input : Set of time series X = {X1,...
Output: List of clusters C
1 C+—0;
2 S+ {X};
3 while S # 0 do
4 Crast =Pop(S);
if p(Ciast) < 9 then
Ctemp < cluster(Cigst, max(2,p X |Ciast|)) ;
S < SUCtemp ;

else
9 L C <+ CUCigst;

s Xn}

B Y

10 foreach Cluster C; € C do
1 C* = arg mazx AG;; ;

C;#C;
12 if AG;; > 0 then
13 | C"« C*UC;> merge clusters
14 else
15 foreach series X € C; do
16 C* = arg mazr AG;;
CU{X}

17 if AG;; > 0 then
18 C*"+ C*"U{X}> move into new

L cluster
19 return C;

Definition 1: Let C; and C; be two clusters, p(C;) and
p(C;) the average correlations between all time series pairs in
C; and C}, respectively, and m the total number of series in
D. The correlation gain of merging C; with C; is defined as:

AGy = (e v oy - HELPE)y g
2m
In case we move one sequence X € C; to another cluster,
then 5(C; U Cj) is equal to p({X} U Cj).

The correlation gain clusters together the most similar time
series by computing the cross-correlation before the move
(second term of Eq. [l)) and the potential correlation after the
move (first term of Eq. [T). The difference between the two
terms measures the gain of merging the clusters.

The merging process based on correlation gain has two
important properties. First, the gain is monotonic thanks to
the greedy maximization of the correlation. Second, the move
and merge procedure is guaranteed to terminate since a time
series that moves out of a cluster never moves back into it,
otherwise, the gain would become negative.

m

Complexity Analysis. In the merge phase, the algorithm
evaluates the best cluster to merge, which has a worst time
complexity of O(|C|?), where |C| represents the number of
clusters. In the move phase, the algorithm examines each series
within the cluster to find its most correlated counterparts,
resulting in a time complexity of O(m x |C|) where m is the
number of series. Since |C|< m, the overall time complexity
simplifies to O(m). Regarding space complexity, the algorithm
only stores the time series themselves, making the space
complexity linear with respect to the number of series.



VII. EXPERIMENTS

In this section, we validate our technical contributions
based on a series of experiments. The experiments are di-
vided mainly into two sets. The first set aims to contrast
A-DARTS with comparable systems. We start by evaluating
how representative are the datasets we use in the experiments
(Section [VII-A). Once that is established, we compare A-
DARTS’s recommendations efficacy to that of other systems
(Sections and as well as their relative running
time (Section [VII-D). This set of experiments shows that A-
DARTS systematically offers better recommendations without
incurring runtime overhead.

In the second set of experiments, we assess how different
components of A-DARTS contribute to its efficacy and run-
time. We investigate the importance of our feature selection
(Section [VII-ET]), pipeline scoring (Section [VII-E2), and clus-
tering techniques (Section [VII-E3). This set of experiments
shows that every component of A-DARTS has a measurable
impact on the final recommendation and is properly tuned.

In the last set of experiments, we evaluate the downstream
impact of choosing the appropriate imputation technique on
common downstream tasks (Section [VII-F). The downstream
experiments reveal that our tool improves not only the up-
stream analysis but also the downstream one.

Experimental Setup. All the experiments were run on an
Ubuntu 22 Linux machine with a 2.1 GHz Intel Xeon E5-
2620 processor and 128 GB of main memory. The processor
comprises six physical cores and carries 15 MB of LLC. The
code and data involved in A-DARTS and the experiments are
publicly availabld]

Efficacy Metrics. We report our results using standard metrics
such as Accuracy, Precision, Recall, and F1-score (bold letters
will be used as acronyms in charts). For each metric, we
compute a weighted average to account for the label imbal-
ance between the imputation techniques during the labeling.
In addition to those metrics, we use the Mean Reciprocal
Rank (MRR) to compute the ranking of the recommended
techniques. Formally, let () be the queries (test set) and rank;
be the position at which the imputation technique with the
lowest reconstruction error is predicted, then:

1 |Q 1
MRR = — —
Q| ; rank;

A. Datasets Description

We aimed to gather a diverse set of real-world time series
that cover a broad spectrum of characteristics. The data
consists of 107 datasets, each containing several hundred time
series of different lengths and properties, amounting to a
total of 67K series. The data originates from various sources,
including the TSC repository [63], the UCR repository [64],
the UCI repository [[65], and ImputeBench [33]. We group

Uhttps://github.com/eXascaleInfolab/recimpute

the datasets into six categories based on their domain and
summarize the key properties of each category below:

e Power. This category encompasses household electricity
consumption data recorded in different countries. The data is
collected using smart meters allowing automated collection
at fine-grained time intervals. The electricity time series are
periodic, and some are shifted in time.

o Water. This category consists of water quality measurements
such as discharge, conductivity, oxygen level, and pH values,
provided by the BundesAmt Fiir Umwelt (BAFU) [66], the
Swiss Federal Office for the Environment. Water time series
contain synchronized trends and sporadic anomalies.

e Motion. This category includes time series originating from
various motion sensors, such as accelerometers or gyro-
scopes, that capture body movements. Motion time series
contain erratic fluctuations and varying frequency.

e Climate. The time series in this group describe various
weather phenomena (such as temperature or precipitation)
provided by the Swiss Federal Office of Meteorology and
Climatology collected from different Swiss cities from 1974
to 2015. Climate time series are periodic and exhibit a high
correlation.

o Lighting. This category contains electromagnetic events
associated with lightning using optical and radio-frequency
(RF) instruments. It provides time series collected at a high
rate (50 MHz), which have mixed correlation (high/low,
positive/negative) and exhibit partial trend similarities.

e Medical. This category represents various human health-
related data such as ECG and hemodynamics (blood flow
such as airway pressure, arterial blood pressure, or central
venous pressure). Medical time series are measured at high
frequency (250Hz) and present aligned and shifted trends.

The datasets were amassed to ensure sufficient representa-
tion of each of the 430 features used by A-DARTS. To that
end, we normalize each feature value to the range [0, 1], divide
the interval into k& buckets, and compute the number of buckets
covered by the time series across our 107 datasets. The results
of this experiment are shown in Figure [6] with features plotted
on the y-axis and the datasets (in no particular order) plotted
on the x-axis.

Coverag@ﬂ(%)

feature #

Fig. 6: Feature Coverage Heatmap.

We observe that all the features are covered by at least one
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dataset, and each time series covers a different combination of
features. Some features, such as the ones in lines 63-81, are
predominantly present in all the time series. Those features
correspond to binary features, such as whether the distribution
of values is symmetric, which naturally occur in many time
series. We also observe other features, which can be seen
in lines 320-330, which are covered by fewer time series.
Those features correspond to peculiar features such as sudden
changes or noise.

B. Recommendation Efficacy

In the next experiment, we compare our system against the
four AutoML frameworks: FLAML [41]], Tune [40]], AutoFo-
lio [67], and RAHA [49], introduced in Section [[Il, We adapt
those systems to apply to the task of recommending imputation
techniques for time series. We do so by training all the systems
on our labeled data and feeding the ones that do not implement
any feature extraction with our set of features. We experiment
with various versions of the baselines and report their results
under their optimal setup.

We test 12 different classifiers E-] ranging from standard k-
nearest-neighbors (kNN) [45]], decision trees (DT) [68]], and
multi-layer perceptrons (MLP) [46] to more recent, sophisti-
cated ones such as CatBoost [47]. We report the recommenda-
tion quality using a sample holdout strategy on each category
with a 65/35 splitting ratio. We create synthetic missing blocks
of varying sizes on each series and compare the recommended
imputation technique against the ground truth. Figure [7] shows
the average F1 scores (marked as points) and the standard
deviation (marked as an interval).
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Fig. 7: Average Efficacy Performance.

We observe that A-DARTS yields the highest average F1
and achieves 20% F1 gain compared to its closest competitor,
FLAML. Our technique also produces the tightest F1 bounds
and is about 2.5x more stable than the second-best technique.
This stems from the fact that A-DARTS can easily accommo-
date any dataset, as we will show next.

C. Recommendation Efficacy Breakdown

We break down in table|lll| the efficacy of each system using
all metrics grouped by dataset category. The results show that
A-DARTS outperforms all the baselines on all datasets. The
results also show that recommendation performance depends
on the properties of the time series, and three performance
trends emerge.

2The complete list appears at: https:/github.com/eXascaleInfolab/
recimpute/blob/main/Config/pipelines_steps_params.py

TABLE III: Efficacy comparison of the recommendation per
dataset. The best results are highlighted in bold, and the
second-best results are marked by ‘+’.

Efficacy Metric
Dataset  System x P R FI MRR
RAHA 042 048 042 044 0.58+
AutoFolio | 0.67+ 0.63 0.63 0.63 -
Power Tune 0.66 0.62 0.66 0.63 -
FLAML |0.67+ 0.64+ 0.68+ 0.65+ -
A-DARTS | 0.70 0.66 0.70 0.76 0.81
RAHA 0.64+ 0.79+ 0.64+ 0.69+ 0.77+
AutoFolio | 0.20 0.12 0.20 0.14 -
Water Tune 0.58 0.62 0.59 0.59 -
FLAML 029 033 029 0.25 -
A-DARTS | 0.81 0.92 0.81 0.84 0.89
RAHA 043 048 043 045 0.62+
AutoFolio | 0.73 0.71 0.73 0.71 -
Motion Tune 0.73 071 0.73 0.72 -
FLAML |0.75+ 0.73+ 0.75+ 0.73+ -
A-DARTS | 0.78 0.77 0.78 0.77 0.78
RAHA 035 049 035 038 0.52+
AutoFolio | 0.85 0.86 0.85 0.84 -
Climate  Tune 0.85 0.87 0.85 0.85 -
FLAML |0.88+ 0.89+ 0.88+ 0.88+ -
A-DARTS | 0.92 0.92 0.92 0.92 0.96
RAHA 0.52 046 0.52 047 0.70+
AutoFolio | 0.32 0.52 0.32 0.32 -
Lightning Tune 046 043 046 041 -
FLAML |0.57+ 0.52+ 0.57+ 0.51+ -
A-DARTS | 0.68 0.63 0.68 0.66 0.81
RAHA 0.88 092 0.88 090 091+
AutoFolio | 0.94 094+ 0.94 0.93 -
Medical  Tune 094 094+ 0.94 0.94+ -
FLAML |0.95+ 0.94+ 0.95+ 0.94+ -
A-DARTS | 096 0.96 0.96 0.96 0.98

High Variability Datasets. In some categories, the difference
between A-DARTS and the baselines is very high. In the Water
dataset, for example, A-DARTS achieves an F1 of 0.84, while
the second-best technique, RAHA, achieves an F1 of 0.69.
FLAML produces a very low F1 of 0.25. As explained earlier,
Water is a complex dataset that contains a high number of
anomalies. Our system can easily capture those data inconsis-
tencies thanks to the different feature scalers it considers. We
observe similar trends in the Lightning dataset but a smaller
gap as this dataset contains fewer data inconsistencies.

Moderate Variability Datasets. In Power and Motion, the
performance of the baselines improves, but the efficacy dif-
ference is still noticeable. For instance, in the Power dataset,
A-DARTS is 15% more effective than FLAML (0.76 vs. 0.65).
Those datasets include features, such as time shifts or varying
frequencies, which are difficult to process by imputation
techniques [69].

Ranked Results Availability. Only A-DARTS and RAHA
can provide a ranked list of recommendations (MRR). Our
system accurately recommends the best imputation method
and systematically computes the correct ranking of imputation
techniques, achieving an average MRR value of 0.87. This
means that it finds the correct ranking in 87% of the cases,
yielding 28% improvement in MRR compared to RAHA,
which returns an MRR of 0.68.
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D. Recommendation Efficiency

In addition to effectiveness, we evaluate the elapsed running
time (wall clock) to select a model, train it, and produce
the recommendation in the previous experiment. A key factor
we analyze is the number of seed pipelines in ModelRace,
which, unlike the number or length of time series, significantly
influences the overall runtime. We also report the average F1
values. Figure [8a] depicts the results of this experiment.
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Fig. 8: Recommendation Running Time vs. Efficacy.

We observe that up to 30 pipelines, A-DARTS is 1.35x
and 1.6x faster than FLAML and AutoFolio, respectively. For
such a number of input pipelines, the pruning helps keep a
relatively low number of configurations. For a higher number
of pipelines, FLAML becomes, on average, 1.3x faster than
our system. This is expected as our system explores a larger
search space of pipeline configurations. Tune is an order
of magnitude faster than the other systems, as it needs to
configure only one classifier with no scaling steps. This low
running time, however, comes with a low accuracy cost, as
shown in Table [

The impact of the number of pipelines on the recommenda-
tion quality, measured as F1 scores, appears in Figure [Sb] We
observe that increasing the number of pipelines does not only
increase F1 but also the stability of our recommendation—the
standard deviation is monotonically decreasing. Using more
pipelines adds more diversity to the selection process, allowing
our system to find better pipelines.

E. Ablation Study

We now turn our attention to a series of micro-benchmarks
that determine the importance of different A-DARTS compo-
nents in the results shown above.

1) Effects of Varying Feature Selection: In this experiment,
we feed ModelRace with different configurations of feature
sets and determine its performance. We consider three config-
uration sets: i) statistical features only, ii) topological features
only, and iii) a combination of both feature sets. Figure [9]
depicts the results for each dataset category.

We observe that in categories with complex properties,
such as Water or Lightning, both feature sets are needed
to characterize the series properly. The similarity between
series, in this case, is much harder to compute using statistical
measures only, thus the need to leverage the shape of the data.
Using only statistical features can be viable occasionally, e.g.,
in categories with simple properties such as the Motion dataset.
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Fig. 9: Feature Analysis.

2) Effects of Pipeline Scoring Alternatives: The pruning
mechanism relies on a scoring function that assigns a weight
to the evaluated pipelines (see Line 9 in Algorithm [2). We
evaluate this function by varying its coefficients o and ~y
through two experiments. When we vary one coefficient, we
set the remaining ones to a constant value. Note that we use
two y axes: the first one for F1 and the second for runtime.
We report the results of these experiments in Figure
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Fig. 10: Score Function.

The results shown in Figure [[0a] show that increasing o has
a similar impact on F1 and CPU. This is expected, as this
increase gives more weight to the most effective pipelines,
which are the more time-consuming ones—they have more
parameters to set. Setting o above 0.5 does not significantly
increase F1 while incurring significant runtime overhead.

The results of the experiment in Figure are generally
aligned with those in Figure [I0a] and we identify two main
results. First, varying « between 0 and 0.75 does not substan-
tially affect A-DARTS’s effectiveness. At v = 1, we notice a
significant decrease in F1 due to prioritizing the runtime of
the pipelines. The CPU curve follows a downward trend, but
the runtime yields no significant decrease beyond 0.75.

The optimal trade-off between selecting effective and effi-
cient pipelines is achieved by setting o and v to 0.5 and 0.75,
respectively. This configuration allows ModelRace to give a
slightly higher priority to faster pipelines with no negative
impact on F1. Thus, our system can find pipelines with an
acceptable quality even if the runtime is given priority. This
occurs because many pipelines have similar effectiveness but
different runtimes.

3) Effects of Varying the Clustering Techniques: In this
section, we evaluate our incremental clustering (used for
labeling) and compare it against three variants of K-shape [61]]:
default (k = 8), grid search, and iterative. We report the results
using two y-axes. The first y-axis shows the cluster average
correlation (the higher, the better), while the second y-axis
shows the runtime. Note that we do not report F1 since we



cannot compare recommendations using different clusterings.
Figure [TT] shows the result of this experiment.
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Fig. 11: Clustering Performance.

Figure shows that our incremental clustering yields
clusters with highly correlated time series (correlation = 0.87)
in a reasonable runtime. k-shape is very fast with a relatively
low cross-correlation between the time series (correlation =
0.61). Such a low correlation hinders the labeling step, as all
time series will be assigned the same imputation technique
despite exhibiting different trends. Using grid search improves
the correlation of k-shape but incurs a very high runtime.

Finally, we provide a deeper analysis of the clustering
results by computing the number of final clusters. The results
in Figure [TIb] show that our solution produces the closest
number of clusters to the ground truth obtained through a grid
search. The high correlation produced by the iterative solution
comes with a very high number of clusters. Such a high
number incurs a prohibitive execution time for the labeling
step, which will be performed more times than needed. K-
shape assigns all the time series to a small number of clusters,
which hinders the quality of data labeling.

F. Downstream Impact

In this last set of experiments, we evaluate the impact of
recommending imputation algorithms on downstream tasks.
We first evaluate the impact on forecasting using seven datasets
collected from different sources, including the Monash bench-
mark [[70]. We create random blocks at the tip of each time
series with the size of 20% and use A-DARTS to recommend
the best imputation algorithm. We compare the forecasting
results on a horizon of 12 observations of the imputed series
with and without A-DARTS. The latter simulates the recom-
mendation introduced in [33]] by constructing a binary vector
that defines the recommendation axis and computing its dot
product with each algorithm’s score vector. The algorithm
yielding the highest score is then recommended.
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Fig. 12: Impact on Time Series Forecasting.

Figure [12] depicts the Symmetric Mean Absolute Percentage
Error (sSMAPE) [37] results for each dataset (the lower the
better). We observe that A-DARTS substantially improves the
forecasting task, on average, by 55%. The gain ranges between
28% (0.97 vs. 1.32) in the ATM dataset and 80% (0.12 vs.
0.64) in the Paris mobility dataset. The highest difference
in sSMAPE is observed in the Weather dataset (0.49 vs.
1.47). The datasets with the highest gains contain time series
with complex features, which require a specialized imputation
algorithm. The downstream improvement is explained by the
fact that the performance of forecasters heavily depends on
how well the data has been imputed and, thus, the choice
of the imputation algorithm. A-DARTS restores the ability of
forecasters to learn the trends of the time series.

Lastly, we evaluate the impact on the classification of the
repaired time series with and without A-DARTS using 80
datasets obtained along with their ground truth from the time
series classification repository [71]]. We present in Figure [13]
a scatter plot of the F1 scores for each dataset.

The results of the classification show that A-DARTS sub-
stantially improves the classification in datasets with complex
features such as anomalies or sudden changes. In simple
datasets, classifiers can ‘“correct” the imputation result and
perform an accurate classification. The choice of the algorithm,
in this case, has little impact on the downstream results.
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Fig. 13: Impact on Time Series Classification. Circles above
the diagonal indicate datasets over which using A-DARTS
yields higher F1 classification scores.

VIII. CONCLUSION

This paper introduces A-DARTS, a system that automati-
cally selects a suitable imputation technique for a new time
series. Without A-DARTS, users have to manually identify
which imputation technique could be best suited to every
new incoming time series. After being adequately trained, A-
DARTS can perform such a recommendation automatically,
with high accuracy and minimal runtime overhead. It substan-
tially improves F1 by 20% and is 2.5x more stable than the
state of the art in model selection. It also drastically improves
downstream tasks, such as forecasting, by 55%.

To develop A-DARTS, we proposed several innovative
techniques, chief among them ModelRace, which sifts through
a vast pool of configurations to efficiently identify the ideal
imputation technique. Our techniques allow ModelRace to
quickly and efficiently learn which are the best classifiers and
under which conditions.
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